Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution
Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution
Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution
Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution
Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution
Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution
FOB
최소 주문 수량:
10
배송 방법:
快递
샘플:유료 지원샘플 받기
제품 세부정보
첨부 파일
필수 정보
최소 주문 수량:10
납기일:15days
배송 방법:快递
제품 소개
 

Raido Spring-Energized Hollow Metal ORings: Innovative Sealing Solution​

   

The newly launched spring-reinforced metal hollow Oring (also referred to as spring energized metal oring seals) by Raido is an innovative upgraded product developed based on the basic hollow metal oring seal. As a high-performance sealing component with unique structural design and outstanding functionality, it combines the advantages of traditional spring-energized hollow metal orings while achieving significant upgrades in sealing performance and working condition adaptability. Below is a comprehensive detailed introduction:

1. Structural Features​

1.1 Core Structural Design​

The traditional spring-energized hollow metal oring is typically formed by bending a thin-walled seamless tube into a circular shape, with its two ends butt-welded to create a hollow interior. Raido’s upgraded product inherits this hollow structure while elevating it with a key innovation: high-performance elastomers (springs) are precisely installed in the inner cavity. Through the elastic support of the springs, the product forms a unique composite sealing structure of "metal skeleton + elastic compensation" — the metal hollow body serves as a rigid skeleton to ensure structural stability and resistance to extreme conditions, while the embedded springs provide continuous elastic force, addressing the limitations of traditional sealing components.

1.2 Material Matching​

To maximize performance, Raido scientifically matches materials for the metal body and springs:

  • Metal body: Options include stainless steel, high-temperature alloys, and other materials, selected based on specific application requirements (e.g., corrosion resistance, high-temperature tolerance);
  • Springs: Made of special elastic alloys, ensuring excellent elasticity, fatigue resistance, and compatibility with the metal body to avoid issues like galvanic corrosion.

2. Performance Advantages​

Building on the inherent strengths of traditional spring-energized hollow metal orings, Raido’s product achieves further breakthroughs in sealing efficiency and durability:

2.1 High Elasticity and Superior Recovery Capacity

Like traditional models, the embedded springs enable the oring to quickly rebound after significant compressive deformation, effectively compensating for wear, thermal deformation, or assembly errors that could degrade sealing performance. This ensures long-term stability even in dynamic working environments.

2.2 Enhanced Sealing Reliability (Key Innovation)​

A standout advantage of Raido’s design is its ability to address sealing surface defects. When the sealing surface has minor scratches, unevenness, or other flaws, the springs generate continuous and uniform compensating force through their own elasticity. This force pushes the metal body to closely fit the sealing surface, effectively offsetting various defects on the surface, greatly reducing leakage risks, and delivering far better sealing performance than traditional hollow metal orings (which often fail to seal properly on imperfect surfaces).

2.3 Strong High-Pressure Resistance​

The "metal skeleton + spring" structure significantly improves pressure collapse resistance. While traditional spring-energized hollow metal orings can handle pressures up to 40MPa (with some ultra-high-pressure models reaching over 100MPa), Raido’s product, through precise regulation of spring strength, can withstand extreme pressure conditions ranging from ultra-high vacuum to a maximum of over 200MPa. It maintains reliable sealing whether under internal or external pressure, making it suitable for ultra-high-pressure scenarios.

2.4 Low Compression Set

During long-term use, the product exhibits minimal compression set — the metal body retains its shape stability, and the springs do not lose elasticity due to fatigue. This ensures consistent sealing performance over time, reducing equipment maintenance and replacement costs caused by seal failure.

2.5 Excellent Adaptability to Harsh Environments​

The metal body itself provides inherent resistance to high/low temperatures and corrosion, and when combined with the reinforcing effect of the springs, Raido’s oring excels in extreme environments:

  • It easily copes with temperature ranges from an ultra-low -196℃ (matching the low-temperature tolerance of traditional models for cryogenic media like liquid oxygen/liquid nitrogen) to an ultra-high temperature above 1000℃ (surpassing the high-temperature limit of some traditional models). It maintains stable sealing performance even during high-low temperature alternating cycles;
  • The corrosion-resistant metal body (e.g., stainless steel, high-temperature alloys) and compatible springs ensure resistance to strong corrosive media such as acids, alkalis, seawater, and radioactive substances, avoiding seal failure due to corrosion.

3. Application Scenarios​

Leveraging its "extreme condition adaptability" — a core advantage of spring-energized hollow metal orings — Raido’s product is widely applicable in high-end fields with stringent sealing requirements, replacing ordinary rubber orings (poor resistance to high/low temperatures and corrosion) and simple metal orings (poor low-pressure sealing and no wear compensation). Key application areas include:

3.1 Extreme Temperature Conditions​

  • Low-temperature fields: Sealing for liquid oxygen/liquid nitrogen storage tanks, valves in LNG (liquefied natural gas) transmission pipelines, and low-temperature propellant systems in aerospace (temperatures as low as -196℃ to -270℃);
  • High-temperature fields: Sealing for boiler flue dampers, gas turbine shaft ends, automotive exhaust treatment systems, observation windows of industrial kilns, and high-temperature components in aerospace (temperatures up to 600℃ to over 1000℃).

3.2 High/Low Pressure and Vacuum Conditions​

  • High-pressure fields: Sealing for high-pressure cylinder pistons in hydraulic systems, high-pressure wellheads of oil drilling platforms, pump bodies of high-pressure water jets, and ultra-high-pressure valves in high-end equipment (pressures ranging from 20MPa to over 200MPa);
  • Vacuum fields: Sealing for semiconductor vacuum coating machines, vacuum drying oven doors, and aerospace vacuum chambers (vacuum degree up to 10³Pa to 10⁻⁵Pa).

3.3 Strong Corrosion Conditions​

  • Chemical industry: Sealing for inlet/outlet valves of hydrochloric acid/sulfuric acid storage tanks, electroplating tanks, and pesticide production equipment;
  • Marine engineering: Sealing for seawater desalination equipment and hydraulic systems of offshore platforms (resistant to seawater corrosion);
  • Nuclear industry: Sealing for cooling systems of nuclear reactors (resistant to corrosion from radioactive media and high-temperature water);
Aerospace & high-end equipment manufacturing: Sealing for key components in aircraft engines, rocket propellant systems, and semiconductor manufacturing equipment, providing a strong guarantee for stringent sealing needs in these fields.

제품 세부정보
Raido Spring-Energized Hollow Metal O-Rings: Innovative Sealing SolutionRaido Spring-Energized Hollow Metal O-Rings: Innovative Sealing Solution

• 작동 온도 범위: 

      -270°C에서 750°C까지 (-454°F에서 1382°F까지)

• 압력 저항: 최대 200 MPa (29,000 PSI)

• 재료: 

      Inconel 718, Inconel X-750, 321, 304, 316L 스테인리스 스틸

• 크기: 6.4mm에서 4000mm 직경까지 맞춤 제작

• 코팅:은,PTFE,금,니켈,Ge 기타.


튜브 측


재료 및 코팅

•튜브 외경*튜브 벽 두께

0.9*0.15

1.6*0.15 / 0.25 / 0.30 / 0.36

2.4*0.15 / 0.25 / 0.30 / 0.46

3.2*0.15 / 0.25 / 0.30 / 0.51 / 0.64

4.0*0.25 / 0.51 / 0.64

4.8* 0.30 / 0.51 / 0.81

6.4*0.30 / 0.64 / 0.81 / 1.24.

图片






엄격한 테스트 및 

품질 관리

Raido는 가장 엄격한

품질 절차에 따라 탄력적인

금속 씰을 생산하는 데 전념하고 있습니다.

컴퓨터 제어 용접 장비

O 링 씰 용접에 대한 100% LP 테스트

요청 시 용접 부위의 X-레이

헬륨 누출 테스트 장비, 전자 데이터 로깅 기능 포함

열처리

유연성

전담 직원

짧은 배송 시간

긴급 생산 절차

빠른 응답 시간

메일링 리스트에 가입하세요

업데이트를 놓치지 마세요

회사 소개

고객 서비스